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Summary 

The steady two-dinennional sink-type flow of a viscous, heat- 

conducting, perfect g*a i3 in'.^-iStig&tQd,    Aw approximate solution of this 

prcbir-.-n i* given for the cane of large Reynolds number   He   (cf. the 

definition given in the text).   In obtaining the present solution the values 

of Prandtl number and the ratio of the first and second viscosity 

coefficient may be arbitrary.    The result shows that the solution has two 

branches, both of physical significance.    On the subsonic branch of the 

solution the flew speed starts from the stagnation point at infinity, increases 

monotonically for decreasing radial distance aid eventually terminates 

with maximum speed at a certain point inside the inviscid sonic circle. 

The solutions of the supersonic branch, which start with the maximum 

speed at infinity, all contain cylindrical shocks.    Within the shock the 

flow speed assumes a minimum value and after the shock all solutions 

tend asymptotically to the subsonic branch.   In contrast to the plane shock, 

the cylindrical shock strength is limited to the order    0(fe~*'J     , and 

the shock-thickness, of    0(Re*'i) .   The latter quantity implies that the 

thickness of the region in which the viscous effects are important is 

thinner, in order of magnitude, than that of ordinary boundary layer 

(of   0(&''/*) )» but is thicker than that of plane normal shock (of 0(fo~'))- 

It is found that the entropy of the supersonic branch rises to a maximum 

within the shock while for the subsonic branch, the entropy increases 

monotonically with the radial distance.    The total variation of the entropy 

across the shock is found to be of   0(He    ) • which is in general greater 

than that across a plane normal shock     /— 0 (shock strength) j .    The 

effect on the flow quantities due to the variation in viscosity coefficients, 

assumed to depend on the local temperature, is found to be at most of 0(Xc^) 
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Introduction 

The problem of the steady cylindrical source-type or sink-type 

flow has been of interest to fluid-dyna.moists for several reasons.    First, 

it is known that the corresponding problem of an inviscid compressible 

fluid has an exact solution containing a limit line of rather special type, 

namely, the sonic circle  (fief.   1) .    To the exterior of this circle the 

solution has two branch of values, one has its stagnation point at infinity 

(subsonic branch) and the other starts with maximum velocity at infinity 

'^UpessOuiC  uiauCu;.      J^'VVU Oi. IUCSC  LWC  i>r^7ICtic5  •i-CrHiiiiavv   ~—   »»*C  .limit 

line with infinite velocity gradient.    Therefore the viscous and heat- 

conductive effects are expected to play an important role in continuing 

the solution further inward.    Second,  because of its  cylindrical  symmetry, 

this problem is one of the few nonlinear flows in more than one dimension 

( \~ for which there is only one independent variable,  the radial distance. 

Consequently, the equations are simple enough to allow a unified discussion 

of the various effects.    These are perhaps the reasons why this problem 

has attracted the attention of several authors   (Ref.  2,  3,  4). 

In the first part of this investigation the Navier-Stokes equations 

are given for the cylindrical sink flow of a viscous heat-conducting perfect 

gas.    The energy equation is integrated once to give a first order 

differential equation.    Then, with some simplifying assumptions,  the 

I qualitative properties of  the solutions are discussed in detail for the case 

,y of large Reynolds number  £a.   .    The definition of   £&     is    & « li..! '    , 

where   f » £    locates the inviscid sonic circle with sonic speed    a,    and 

q  k   u.     are the fluid density and viscosity coefficient at    /*=£" -    These 
I   * 

c 
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basic properties of the solutions thus comprehended serve for a useful 

1 guide in our final calculation of the solution. 

In the second part oi this paper the detailed calculation of the 

solution is carried cut for the case of large  ZZg.   .    It is found that there 

is no single expression available for the solution uniformly valid in the 

entire flow region.    The calculation is then performed in three different 

regions characterized by the length   tj     and the parameter  & For 

t > /J + 0(h,     )      the approximate solution is obtained by using the 

PLK method*.    The result fails to be a good approximation for   r   too 

close to   f    .   For    rf -0(&      ) < r <   $ + O(0e~ /s)        , a different 

similarity rule for the variables leads to a system of cylindrical 

transonic equations which governs the flow across the sonic region. 

These equations can be integrated analytically for each of the different 

order terms.    The result shows that the solutions belonging to the super- 

«* sonic branch all contain cylindrical shock-type flow in this transonic 

region.    In other words, those solutions gradually deviate away from the 

inviscid supersonic branch,  reach a minimum near    r = ^     and then 

approach asymptotically to the viscous subsonic branch.    It is also found 

that the shock strength is of    0( £e J)   while the shock-thickness, of 

0{Rt    ),  results which are quite different from that of the plane normal 

shock.    Within this region, the thermodynamic variables satisfy the 

isentropic relation up to the order   O (£e J ) but deviate from it by a 

"•*- *   This terminology was introduced by Prof.  H   S.  Tsien in a series of 

seminars, held in California Institute of Technology in 1954, in which 

the method due to Poincare — Lighfill — Kuo was discussed. 
»•*• i - 
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quantity of 0(Sc ) . The approximate solution for r < rj - 0(£e*3) is 

subsequently carried out. Finally, the entropy variation of the fluid and 

the effect due to variation in viscosity coefficients are discussed. 

The corresponding source flow problem was previously solved, 

using numerical method, by Sakurai (Ref.   3); a qualitative investigation 

on this problem was later elaborated on many points by Levey (Ref.  4), 

by making use of some conventional methods in nonlinear differential 

equations.    In the latter work,  the orders of magnitude of many flow 

quantities of interest were estimated.    The present investigation on the 

c 

1.    The Fundamental Equations 

Here we are concerned with the two-dimensional sink flow of a 

viscous, compressible, heat-conducting fluid with polar symmetry.    The 

only independent variable is the radial distance   r    from the origin.    The 

radial velocity,   V.   ,  is the only velocity component and is always non- 

-3- 

sink flow is not merely a special case of the cylindrical flow other than 

the source type, but also presents an improved method superior to those 

used in the previous works (e. g.  Ref.  2, 3, 4).    The powerful PJLK-method 
I 

applied to the outer region yields a set of reliable boundary values for 

the transonic region and thus enables all flow quantities of interest to 

be calculated quantitatively in all regions.    However,  the previous works 

should be credited here as to have led this author to a better understanding 

of this problem.    The author is also indebted to Prof.  H.  S.   Tsien fox 

suggesting the problem and to Profs.  M.  S.  Plesset and C. R.  DePrima 

for their assistance on many points. 
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positive for sink flow.    Let  4>  , f , T , u. ,  ft ,   X , &  , C   , C    denote 

respectively the pressure,  density,   absolute temperature,  coefficients 

of shear and bulk viscosity,  heat conductivity,  gas constant,  specific 

heats at constant volume and pressure.    The momentum equation is 

du.   _       df>    .    J r.» du   .  Z /./ ... i   d ,...^\  . „.. d f1L fu 
dr 

dfi 
<fr '^F'f^HW (1.1) 

and the energy equation is 

J '   •   JT ... Ja' 
f"&i'* r) = yH^ Tr </ £+W-/tt £* *fi (1.2) 

The continuity equation can be written in the following form if m     denotes 

the sink strength, 

ZTTotir =-/* (1.3) 

The equation of state is assumed to be that of a perfect gas, 

f> = £f T        . (1.4) 

Equation (1. 1-1.4) are a system of nonlinear differential equations for 

four variables   U  , 6 , e   and  T   if    A , tl , %   , and   Cfi   are known 

functions of    T   • 

To reduce the equations to nondimensional form, the following 

nondimensional   quantities are introduced: 

J 

where quanities with the subscript  1  are ficticious quanties which would 

occur at the local Mach number unity for nonviscous and non-heat- 

conducting gas.    Thus,  with   Y   equal to the ratio of specific heats, 

-4- 
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assumed constant throughout,  the sonic speed   a,  at   r-r   is given by 

a=   rt/f, .  and 2Tl%a,r,  mm     • C1-6) 

The continuity equation then becomes 

fvrr - I . (1.7) 

Here   w    is always positive for sink flow.    The equation of state is now 

/* = f*        • (1.8) 

Using Eq.  (1.7),  and writing 

/-yti^J^/C , (1.9) 

the nondiznensional form of Eq. (1. 1) becomen 

P dr f dr \df \-r Jr        r f </FK       •>   t   dr I F 'J 

where    of     denotes the inverse of the Reynolds number 

•   .,.* « = -A_ « £^_    , (l.ii) 

which will be considered much smaller than unity throughout this paper. 

Stokes assumption on the viscosity coefficients states that 

/i'=C      ,     or 4= -j     • (1. 12) 

As this assumption does not agree with observations for many kinds of 

fluid (cf.  Ref.  5), condition (1. 12) will not be imposed on the final 

calculation of the flow field. 

Again using Eq.  (1.7), the nondimensional form of Eq.  (1.2) can 

be integrated once to yield: 

Z  T y./   '        ~lr dr\r-tS J dr /• J      Z(Y-I) 
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where   <T   denotes the Prandtl number 

t if -   c>"*    . (X. 14) 

The integration constant on the right hand side of Eq.  (1. 13) is chosen 

as shown above so that the limit solution for vanishing viscosity agrees 

at large   r   with that of a nonviscous,  iso-energetic flow. 

Eliminating  j>   in Eq.  {1. I 0) by using (1. 7) and (1. 8),  and 

introducing     J -ty''     as tne independent variable,  we obtain: 

c 

The energy equation in terms of y   is now 

Eqs.  (1. 15) and (1. 16) are the two equations for two unknowns    w    and   6   . 

The boundary conditions for them can be determined by requiring that 

they tend to their respective inviscid solutions as     »-*-<x>  so that these 

two solutions can be appropriately compared later. 

1. 1   The Nonviscous Solution 

The solution for sink flow of a compressible inviscid gas can be 

literally obtained by putting    o( -O    in the above equations without 

justifying the validity of such a simplification.    Then the equations reduce 

to 

dj    r 
and 

Z 2 

£+JL[jL(£)-±] = O (1.17) 

(1.18) 

§j The solution of this system of equations is known to be 

-6- 
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and 

The value o*  ^   can be expressed in terms of stagnation state as 

-     -n       _       m n = zn%%    **w    •%% 
to.     /t+/)2<r-0 m 

(1.19) 

-{1.20) 

(1.21) 

2       fJb 
where      a  •=. _li      ,  and  4^   , &    are the isentropic stagnation pressure 

To 

and density.    Equation (1. 20) simply states the isoenergetic and isertropic 

relations. 

This inviscid solution   tf(r)    given by Eq.  (1. 19) is plotted in Fig.   1, 

V& -: 

/  . 

Fig.   1.    Graph of Inviscid Solution. 

It gives no solution for     /*<-?    , but for   /•></    ,   W   is a double-valued 

function of   f        On one branch   w    tends to zero so that thermodynamic 

variables tend to their stagnation values as     r-— ••   ; on the other branch 

W    tends to maximum speed attainable    \jXH- , and the thermodynamic 

-7- 
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variables tend to zero as    r-^oo  .    They will be designated as subsonic 
V 
1 - and supersonic branch respectively.    Both of the branches terminate at 

r *. r     with sonic speed (at which the fluid speed equals the local speed 

of sound).    The slope of the curve     w(r)    , 
y 

j^ Jem   *~< Jyi-7 
d*r _   z     vkhr ~ IT" ) ( (1.22) 

( 

; 

( 

dr        Y+i •1 

is much smaller than unity for     r»r;     on both branches and consequently 

viscous effects become comparatively unimportant there.    But as   f-*-S?  , 

dtr ^-_*. / ,     z—      becomes numerically unbounded,  and thus the viscous force 
of 

near   /* = <£*    should play a role as significant as those of inertia and pressure 

forces. 

Now this invi8cid solution will be used as a guide to study the sink 

flow of a real fluid governed, by Eqs. (1. 15,   1. 16)   for large values of   2e , 

in the sense that it is assumed that the limit of the viscous solution for 

vanishing viscosity approaches the inviscid solution as    r-»-oo , for both 

subsonic and supersonic branches.    By continuing these viscous solutions 

backward in   r     where viscous effects become more and more prominant, 

it is expected that the real fluid,  affected by viscosity and heat conduction, 
• 

will flow across this fictitious sonic circle,  which is a limit Une when 

viscosity is neglected. 

It may be remarked here that the equations for source flow of 

real fluid can be obtained from (1. 15) and (1. 16} by changing the sign of 
'•; 

» terms with factor    <x     if  W   again represents the absolute value of the 
Vs. 

•••• 

radial speed, normalized relative to    </,       (cf.  Ref.  4).    Hence the 

inviscid solutions for source and sink flow are identical,  but their respective 

• 8- 
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viscous solutions will be shown later to have quite different features for 

ail  r  . 

2.    Properties of the Solution Curves   

2. 1   Approximate Differential Equation in the "Phase Space". 

In order to study the qualitative properties of the solution curves, 

several assumptions will be introduced in this section to simplify the 

analysis while most of the important features of the original system will 

still be maintained.    The Prandtl number, (? ,  is assumed constant 

because    M.   and    X    have almost the same dependence on temperature. 

In this section,     /*-      is also taken to be corns taut so that   JL - i   .    When 

the complete solution is calculated later, however, the assumptions 

introduced here become unnecessary. 

.     # - Equation (1. 13) can be integrated when the Prandtl number 

/f _ 
TTTTZf      • ,2-1> 

(under Stokes assumption,    A=. - j-     , then     cr= 2. _ *-    ), and the final 

integral is 

6-[1+>-ilL(,+ 4«i)*] = A   e*7~A(f)*       , (2.2) 

where    A     is the integration constant.    The value chosen above for   (f   is 

actually not far from experimental data (   <T = o.72     for air at standard 

condition).    As     If    only appears in the coefficient of the derivative    -^- 

in Eq.  (1.16),  it follows from the theory cf differential equation*   (Ref.  6 

p.   142)    that the solutions and all their derivatives will be continuous in 
r' 

(f   for    W>0   ,     -««<f<»  .    Thus the assumption of choosing this 
v   - 

-9- 
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particular value of   V   would merely lead to simplification of analysis 

rather than material change of the solutions.    If we further require by 

physical argument that the deviation from the iso-energetic relation 

expressed by the term with the arbitrary constant   A    will not overwhelm 

the right hand side terms for   r<fj   , we may assume  that    A -o   .    This 

restriction, however,  can again be relaxed when the complete solution 

is discussed later.    It will then be shown that    ,4      is indeed of the order 

0(<*) .    Thus the particular solution with     A~-o    would still provide a good 

approximation to the complete solution. 

With    A=o   , the energy relation becomes 

0 » 1±L- llL(li.+6<l)Yr!t   . (2.3) 

Introducing this equation into £q.  (1. 15) and eliminating the 

explicit dependence on V   by the substitution 

C »-£"'£     • <2-<> 
we obtain 

otW*V ^  •/• v[/- O-ffoe)^ -wl/ -^S •/• (a-Ooflvr   .-0 (2.5) 

where 

*1 ,,+ ixZ *-*-< ~  -     * -#<"«*   •   f-%!    >    "&W      • U-W 
The variable   V    is closely related to the fluid velocity gradient.    Since 

the terms    acx      and   (a-')*    in the brackets are merely corrections to 

constant coefficients of   0(0   , the properties of Eq.  (2. 5) would not be 

altered if we had neglected these terms in order to simplify further 

algebra.    Thus the approximate differential equation 

orv/v ~ + V(t-vr') - w(/-/tvr) = o (2.6) 

-10- 
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in the phase space    (*>', V)    is expected to exhibit all important features 

of 'he original system Eqs.  (1. 1? -  16) for  /* = /   .    The equation 

similar to (2. 6) wac derived by Sakurai (Ref.   3) and later was discussed 

in detail by Levey (Ref.  4) for source flow in a real fluid. 

2. 2   Properties of the Solution Curves in Phase Space . 

Equation (2. 6) is nonlinear and cannot be integrated.    However, 

several important features of the solutions can be readily seen by study- 

ing the properties of the vector field   (w, V)    defined by Eq.  (2.6),  such 

as the type of its singular points, the curves of zero slope and zero 

curvature together with some obvious isoclines. 

(a)   The curve of zero slope; the inviscid solution 

JLet    C,    be t 

Ct   is then given by 

dV JLet    Cf    be the curve on which    —    given in Eq.  (2. 6) vanishes, 

which is also the inviscid solution in     w -V    plane.    The function   Y(*?) 

given by Eq.  (2. 7) has a simple pole at   wr »/    (the fictitious sonic circle), 

and two zeros at   W= o    and     W = f which correspond respectively 

to the subsonic and supersonic branch at   r— <x> .    Near the origin,    V(w) 

has the following power series expansion 

Vc   a w[//- 0-f)W  +('-f)W + (t-f)Yf+ • - : •] (2.8) 

which starts from   W=0   with slope unity.   Near the point     w' = B 

the expansion of   V(V)   is 

# 
z 

I ^-['-^(f)^^-^^'"]      <2-<> 

( -u. 

• 



».*.< . 

( 

( 
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where 
z = w - a z   . 

i 

This branch of the curve    Ct    starts from    (ft * , o)    with the slope   -i£~ 

The curve   Cf    divides the ixifinite strip    04 w$ £ *    into regions of 

positive and negative slope as shown in Fig.   2. 

V >o 

w 

\'<o f 
Fig.  2.    Regions of Positive i.ad Negative Slope; Isoclines . 

In this strip, -r- given in Eq. (2. 6) becomes infinite only on (i) V=o, 

o<w<fi * , dnd(ii) w=o , V£o . Besides, w * f J , V?o is also 

an isocline on which 

dfir <* 

(b)   Properties of the singular points. 

The only singular points of Eq. (2. 6) are {0,0) and   (f*, °)   • 

The origin is a singular point of higher order.    But if one sketches the 

vector field    ( *%? ,  ^efc)       defined by 

tft 
<g = w (/ -sw*) - V ('- *f) 
t/t 

12- 
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along a simple closed curve  dd) in the neighborhood of thforigin with 

the origin in its interior, one finds that the Poinc^^Vj^ j^d,     c£, Rcf,7 

p.  45) of this singularity is equal to - /   .    Thus 'k^vtWigin is a saddle 

pciint through which only two solution curves may pasi^^V     <><ie of fee 

.. o      'vhich nither yi^ld* a trivial solution    ( V*o)     °^wS.h.*a no physical 

meaning   ( V k o)  .    The other solution curve starts from t^fc    e origin with 

slope equal to   +1     (which coincides there with the inviscid 

thus represents the only possible radial sink flow with atagna\ 

By substitution of a power series into Eq. (2. 6) (or by ordinary 

the asymptotic value, for small   <*     , of this solution near the 

found to be 

olution) and 

, ion at f* oo. 

iteration),, 

ilgin is 

L\ 

t [(/-p) -<*(/*• <6fi    if) t vx (+. \fj  eye* ] w + 

•} The ooint    (-fi   , a)    is a singular point of regular type.   In the 

neighborhood of   X 3 w- f *»<? , V~0  , Eq. (2. 6) becomes 

</z o(V + Q(z,]t) 

in which  P   and  <£   vanish like     JC+V 

singularity (Ref. 7 pp.  37-44) is 

(i)  a nodal point if   « 6 ('~}~~ 

(ii) a spiral point if     or >   -—- op 

9.r.     x% V-»-<? »   Thus the 

, (for air,  p~± »<*< |j > 
(2.12) 

As the problem will be confined to the case    of« I      , we shall only 

13. 



consider this singularity to be a nodal point, (which changes to a saddle 

point for aource flow, cf. Ref.  4   ).     All solution curves passing 

through this point will have at this point two distinct slopes which can be 

calculated from the secular equation of Eq.  (2. 11), namely, 

-of 1 

if \ -(>-(*) 
= O (2.13) 

which has two unequal positive roots 

,-f (2.13a) 

From these two eigen-values two eigen-vectors associated with Eq. (2.11) 

at    (z»o, V' o)        can be obtained.   By using this result it can be shown 

that the solution curves passing through   (z-o ,V*o)    have near this 

point the following parametric representation 

y-JlLz   m c, e. 

U 

with the slope 

(2.14a) 

(K-XJt 
(2.14b) 

Since    X,>X^>o   , VtZ**o  as   4-*--°<».   It also follows from the above 

equations that there are infinite number of solution curves, corresponding 

t» arbitrary   C,    and (±   (Cg¥o)     which have the asymptotic value 

VZ.2L. z.  -HCIZI^ 
,-f 

near    (z=0 , V=o)   ;       (2.15a) 

14- 



and, in addition, there is another solution curve passing through this 

\ . point  (•*» C£ = o)   , of the value 

V=(^-r4)* near (x.OtV*o). (2.15b) -, -p 

The first group of solutions,  given by EH.  (2. 15a), have the same limiting 

value at    r=°°  as the inviscid solution and hence represent the many 

possible sink flows starting with maximum velocity     w - 6 *    at    /*• <*» , r 

while the solution given by Eq.  (2. 15b) is physically irrelevant.    The 

asymptotic value, for small   or    , of this physically significant solution 

near the   point      #*f   is 

. 

•v' 

*«L < /,/^n   »?* ["» - Efr ^^^SN^^ *«*] 
-* 

y.C/«/ (near     z*W-ft* =o) (2.16) 

where   C    is an arbitrary constant.    The last term follows from Eq. (2. 15a). 

(c).    The curve of zero curvature. 

The second derivative of the solution   V   can be deduced from 

Eq.  (2.6), 

. avrVJ ~2   = 2V-w('+f¥r*)V *~ ('-ftffoO-^-vrO-pvr'^  . (2.17) 

fv 
Let   <?2    be the curve on which     -r—a     vanishes, the equation for   d£ 

is then, except where  wV    is zero,  given by: 

Z V3- w (I +fl W) V*+ £ (t-ftf) [ V0-W*) - W (/ -fi«/)] « 0 (2.18) 

The function    ^M    satisfying this equation has the following propertiet 

(i)     Vc        has only one real value for eithex 

-15- 
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£ '4*« + i[Z£*] or „>,-*[„-*-]     j (2.19a) 

V„    has three real values for 

'A 
"T[-^«]    <"*f    I'+lfe] '> <219b> 

V.    has two equal real values at 
> 

"W^*]'*    »       *-/f'[/*-g-J     and      r.^   . (2   1<?c) 

(ii)   The curve   £    starts from the origin with slope equal to 

unity and has,  in the neighborhood of the origin, the 

following expansion: 

*•[('• f) -« 0+ ~Mfi +3f'") +Z<* (17-/Zf) -&« jtvV ... (2. 20) 

(2.21a) 

(iii)   The curve    C2    crosses   w = /   at 

C V 0) = 0~f)   (*«)* [ / / <?(<**')] 

with the slope 

M = | r'-///Jf**)~x[/*^/J;1 (2.21b) 

(iv)   When   w ~ ^      ,    \£  = O      and     Vc  = y* *   .    Thus   C,    has 

a double point at   ^   , o)    ,  where the curve has two 

different slopeu   -ZlL. [i + 0(at)]     and   IZlLftj- 0(<x)J .    Near 

this point these two branches of the curve    C,    has the 

following expansions: 

+ -£±-S(/+6fii-/)t0(*)\z, + •••   \ (2. 22a) 

<(»» 
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i 
and 

c2       « i 
where x = tv - 4 *   . 

(v)     The slope of the curve   C4 

(2.22b) 

(2.23) 

becomes infinite at 

snd 
„~Z" 

*• - f   L'+JTZjJ     > V ~ ~ kf 
.1 
^ 

(vi)   For    *»!,    vc ~f*r .   vc  ^ i f3 ^    ' (2.24) 

The curve   C£    divides the  (w-V)   plane jnto regions of positive 

and negative curvatures as shown in Fig.  3. 

(•'-/!) ,<W) 

c 
Fig.  3.    Regions of Positive and Negative Curvature. 
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(d).    Sketch of solution curves  V\'"r) ; definition of cylindrical shock. 

4 The above discussions on isoclines, types of singularities,   regions 

of positive and negative slope and curvature,  enable the solution curves 

to be sketched. 

First let us consider the solution curve starting from the origin. 

Comparison of Eqs. (2.8), (2. 10), and (2.20) shows that, for <* and vv 

small, 

V (w) > V(w) > V (w)       , (2.25) 

the difference    (Vc -Vj^Ofaw3)     while    (V-Vc )- 0(«Zw7)   .    Thus the solution 

curve V(ff)    lies in. between   Ct     and   C£    where the slope and curvature 

of  V(w) are both positive.    A careful study of the slope of V(w) and   6£ 

(cf.  Eqs.  2. 6 and 2. 23) indicates that the solution curve lies above   C   for 

w>o .    Hence   V(*f)   is a monotonic increasing function of   w    with 

2~ increasing slope, passing through   w = /    between the points  V = ——     and 

V =• (/-,*>   (**.) ^   » and finally ending up at    «• = £z    with the slope   ~ = LzJL ' T aw      <* 

(cf. Fig.  4). 

As previously shown in Eq.  (2. 16), there are infinite number of 

solution curves starting from    w - f *   , V=o    with the same slope     2f- . 
-J. ~" 

However,  for   (w-f*)    and   of     both small enough,  comparison of 

Eqs.  (2. 9), (2. 16) and (2. 22a) again shows that all these solutions satisfy 

for small negative    (<#-f"2) » the following inequality 

V(#) < V, («)< Vr («) (2.26) 

as shown in Fig.  4. 

As    yf    decreases from    y? * , V   (for every finite C   in Eq.  2. 16) 

decreases with increasing slope until it intersepts    C£   with a positive 

I 



' 
• ' 

V 

Fig.  4.    Sketch of the Solution Curves in the Phase Space 

? 

slope.    For further decrease in   w , the curve   V   should lie above a 

straight line with this positive slope at the point of interception because 

-y-j    is positive in this region.    Hence the solution curves will 

eventually meet   (*    with zero slope,  and from there on, for further 

decrease in   if   ,  V    increases from negative values and later crosses 

V = o   with infinite slope at some point in between   vf-o    and     vf- f 

as can be shown by the method of bounding curves and will be made 

-19- 
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explicit in our later calculation.    Further extension of these solution 

^ curves shows that   V    increases with increasing   w   and finally approaches 

asymptotically to the subsonic branch solution which starts from the origin. 

There is a particular value of the integration constant (in Eq.  2. 16),  say, 

c = q, < o      ,  for which the solution curve finally ends up at the origin with 

infinite slope.    For   c < c„ , the solution ceases to have physical meaning. 

On the other hand, the solution curves for    c > cg     have a very interesting 

feature that these viscous solutions all exhibit the transition process from 

the "inviscid supersonic branch" toward the "viscous subsonic branch". 

JLet us consider,  in particular,  the solution with    c =o   .    It first inter- 

cepts     <*      at   (*r,,V,)  ,  sa >•,  and then crosses   V= o   at    w = w;   .    Since 

\tff >/    and    v£ </     (as will be shown later), the flow between these two 

states may thus be defined as that of a "cylindrical shock". *    Inspired by 

the result obtained in Eqs.  (2. 21},  we see that the equation governing 

such a cylindrical shock flow can be approximated by the following 

similarity transformation 
'/a                                --i~ 

w  =   / ^ «   iv1        ,       V = a^V . _      (2.27) 

• 

i 

(3) (4J *   This terminology is adopted by both Sakurai        and Levey    ' to  describe 
such type of flow.    The term "shock" is borrowed from its conventional 
meaning to indicate the transition from one branch to the other,  though 
the transition is rather different from that occurring in a plane normal 
shock.    Perhaps this terminology relates closer to the conventional 
meaning of a shock for the constant   c    slightly greater than     c0 
(cf. Fig. 4), because then the jump in  w and the slope j% -** in transition 
become greater and the position of transition is farther out from   r = /; 

> (cf.  Fig. 5).    But siucc there is no adequate criterion to distinguish 
one from another value of   C  , we shall retain this name.    Another 

?- terminology, the dissipation layer,  is suggested by Prof. H.  S.  Tsien 
to void this ambiguity and, in addition, to stress the importance of 
viscous effects in this layer. 

C -20' 
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which will render all terms in Eq.  (2. 6) equally important in this flow 

region, that is, for vanishing   a   . 

V _   = ewV  '• (i-e)    . (2.28) 

Since this equation governs the flow of both branches near the sonic 

speed,  it may be called the "equation for cylindrical transonic flow", 

(e)   Sketch of solution curves    w(y)   in physical space. 

From the definition of   V   ,     'V(w) = --r—     , we have 

J-J   VM    +° ,2-29) 

where the integral stands for an indefinite integral and 

"£*(&) (2-29a> 
bO that   y   tends to its inviscid solution for   y   large. 

Now for the subsonic branch,    VM^o     ,  hence     y      is a 

monotonically decreasing function of • w   .    Moreover, for same value of 

vr ,  V(w) is less than its corresponding inviscid solution   (cf.  Eq.  2. 25). 

Hence, from Eq.  (2.2 9), 

7. (w) <  7      (w) -(2.30) 
/••AS. /iavi's- 

In other words, at every   -» ,   (wj .    is slowed down from its inviscid 

value   due to the viscous effect. 
j_ 

For the supersonic branch starting from      w =••$        .    V(w) 4 0 

for    vr ^ w <; ^ z    , hence in this interval   y    is a monotonically increas- 

ing function of   W   .    At     vf = W^     ,  (** •» »w , say), 

and, from Eq.  (2.6) 

• 21- 

|BWW*?5*fs?- 



• 

therefore    vr(y) = v^      is the only minimum of   w    on this branch.    For 

J « y    .  V    decreases with increasing   *T   .    Furthermore, because of 

the relation given in Eq.  (2. 26),  we have 

/vis /mm 
W>/   ,    V^O   . (2.31) 

The above properties of the solution enable the solution curves to 

be sketched,  as shown in Fig.  5.    As the constant    c    decreases from 

zero, the minimum value decreases and the jump in   w    increases while 

the jump takes place farther upstream. 

Fig. 5.    Sketch of the Solution Curves in the Physical Space. 

V 

c 

It follows from Eq.  (2. 27) that if we introduce 

y = <x J;       ,       vf = / + or    w   t 

then Eq.  (2. 28) becomes 

A & 

'! 
=     ' «    v- y- (t-f) 

which is the equation governing the flow near    W * /   ,    y 

22- 
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—  (2.32a) 

-(2. 32b) 

Integrating 

it 
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this equation once,  we obtain 

4 <*"  + *•*   =  ('-f)g  + Const. (2. 33) \ 

r 

i 

This equation will be integrated and discussed in detail in cur final 

calculation. 

3.    Calculation of the Solutions by Using PUC-Method* 

In this section we shall calculate   W(y) , 0(v)    governed by the 

original system of Eqs.   (1. 15 -  1. 16).    Throughout this section   A   will 

again be assumed constant t,o that    /L - I   ,  but no restriction will be 

imposed on   <f and   £ .    Consequently Kqs.  (1.15,   16) become 

j- *--j-i<-«»v- ^w^lfOi-i) ^        ' 7j 

*-JL«*4)9    t.  h*•jL    . (3.3) 
i+i V  i-f-k 

Using the PLK-method,  as described below,  the generalization to the 

case    yM. -A(r)   presents no particular difficulty (cf. § 7). 

It was seen before that even for a simplified version of these 

equations,  such as Eq.  (2. 6), conventional perturbation method merely 

leads to asymptotic solutions for small    of    near  w-0 or   w ^ 3 z    (cf. 

Eqs.   2. 10,  2. 16) because coefficient of    W     does not diminish as   «-*•«>•» . 

Thin asymptotic result fails to be a good approximation to the required 

solution as   W"   deviates farther from    W=o   or     W" = J9'? and becomes 

*   Cf the footnote in the Introduction. 
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almost upeless for calculation!! near   vr - /  ,       Now let us resort to the 

PLK-methcd,  which is in essence to expand the solution in terms of 

power series in   or     with coefficients as undetermined functions of a 

parameter   0   , 

w(£) = £  + or W(£) + a w (0) f 

A CK 2   (Z). 
]($) =/ (0) +«y (?) t« y (0) t 

(I) 2  J*>, 
0($)   =.&{$)+«&($) + « 6 (0) t 

(3.4) 

( 

The need of a parameter jj   to represent the solution and that   W   starts 

with the term   £   are clearly suggested by our previous discussions. 

Substituting these expansions into Eqs.  (3. 1) and (3. 2), noting that 

dtv __  w dB __   &' dw       w */"$' 
dj-y< v r     *f v? (fy 

(3.5) 

where prime stands for     -s-r    , and then equating equal powers of  <x   , 

we obtain the zeroth order equations as follows: 

[o"-(^-W)}f''^ 

(3.6a) 

(3.6b) 

If we choose    rj 

solution 

(o) different from zero, then we have the zeroth order 

and 

(0) in    r-i *(!)-¥- ?* 

fv---H$-±rH\•-±±*\ 

(3.7a) 

(3.7b) 

c -24- 
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The integration constant in Eq.  (3. 7b) has been so chosen that when 
(0) w "*• °  ,   0 ~ vv    and    J (w)    agrees with inviscid solution. 

The coefficient of   4   in the expanded equations gives the 

following first oxder equations 

and 

^ r 

9   + (r-00 w   . 

(»> 

where 

i=£T , ,,t • /*fcr> fU '-Vl'-afaH 

(3.8a; 

(3, 8b} 

(3.8c) 

By substituting Eqs.   (3.7/ and (3. 8a) into (3. 8b),  the terms in the curly 

bracket can be rearranged to take the following form 

1+1 
zr 

and finally Eq.  (3. 8b) turns out to be 

wh**r e 

[/    it (H-fz)ZS 1        ,fc 

I3 '-ft    \(ff-,) 

Q as 

(3.9) 

C 

• 

• 
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c Now in order to ascribe to    v/'    a possibly lowest order singularity at 

r. -I   to improve the convergence of the series,  we decompose Eq.  (3. 9) 

as follows 

(3. 10a) 

{3. 10b) 

The solution of Eqs.  (3. 10a, b) is thus 

{3. Ua) 

{3.lib) 

. 

( 

where 

A = *«-L[lz*    fa  e)    ("€)*fl (3.lie) 

In the above first order solution,    w0>   and    y      have singularities at    0 -/ 

.0) O. 
of the same order.    After having determined    W     ,  9 (§)    is then given 

by Eq.  (3.Sa)„ 

Proceeding in a similar manner to obtain the second-order 
z 

equations by equating terms with   a.     , we find that the resulting equations 

possess the solution of quite lengthy expression,  in which   V   (0)    starts 

with the term    2(i-f)fi-€) r~3    followed by terms of    o(- T-\\     while 
' U-& ) ('-§*)' 

W (f)    still can be made to be of   0( -—-j-j  .    Therefore the final 

solution can be expressed parametric ally as follows: 

0 

i c • 26- 
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o-p) 
o-ff      O-g*. 

+  c z 
IZL^-P (3.12b) 

( 

where    A   , £  ,   e    are constants ^iveninEqs.   (3.11c),   (3. 8c) and 

C -o    for the solution starting from    k = o , 

t 

C       is arbitrary for the solution starting from   0 •» £ *    . 

The value of    8    is given by 

f     /-r ] * «feO 

(3.12c) 

(3. 12d) 

( 

Several interesting features of the above solution may be 

mentioned here,    (i)    & = o       for   <T=      ' y    ( = 4-    if  ^=-j-.  cf-  E3-   3.8c). 

With the value of  ^   and ^   lying in the experimental range,     £    is still 

a a mail number.    Consequently, the variation in    (f and   K   only 

contribute a small correction to the coefficients of   0(i)    in the solution. 

This fact confirms our previous statement in    §   2. 1.    (ii) By substituting 

Eq.  (3. 12) into Eq.  (2. 2),  it can be found that the arbitrary constant    A 

is of    0(°<£)  .    (iii) The most important property of the above solution 
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is that they do net provide an approximate solution with uniform 

accuracy over the interval of   jf    such that   o i- *r $ p        .    Aa    M 

approaches unity,   the higher order terms,   especially in y(g)   ,  become 

more important relative to the zeroth order term.    More precisely,  the 
s6 '/J -j 

solution is good only for      o ( £ £ /-K°< and    11 K<x   4g * f ,   K 
ft 

being a constant of 0(0  .    At     0 - /£ K*    ,  all terms in the expression 

for   %(£)    become of the same order, C(«    ) ; but the convergence can be 

made sufficiently rapi"i by an appropriate choice of the value    K 

In the subsequent calculation of the solution through the transonic 

region,  we shall only consider a particular solution with   C -o   ,    c^--o 

in £48.   (3. 12).    Furthermore,   it has been found convenient to take 

K-2(ti-0       -    With this value of   K   , we obtain,  from Eqs.   (3. 12a, b), 

the following result: 

(i)   supersonic branch, 

i / ^ y* % 2/3      jw      *£ 
^' at       vvr =//,?f-?-)    ,      7) = Z.ZBl(tH)«       and     ~~o.e,is    * . (3, 13ai 

\1+iJ / dy (f+i) 3    * 

1 

(ii)   subsonic branch 

, rf A A 3/3 
at      W»/-^{T~)      ,      7 = /.76t (YH) <X       and      fg«-g-*». «       .(3   13b) 

These values will serve for the boundary conditions imposed on the 

transonic solution to be obtained below.     That the PJLK method is 

powerful in solving this problem can still further be stressed by the 

following argument.    As the first order term in the expression for    w(g) 

(cf.   3. 12a) is quite unimportant in the aforementioned regions for   0    , 

one perhaps would try, instead of Eq.  (3.4). a simpler expansion 

(o) 0) 
y(w) m y (fti + « J (W) t   • •  • (3. 14) 

• 28- 
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i'nd a similar expansion for    9     in terms of   »v   . It can be shown that 

| the above expansion will yield a solution in which r>     is identical to 
(i) 

inviscid solution,  but     y  (w)     has,  in p.ddition to a simple pole at   vf-l , 

a pole and a logarithmic singularity at       W - f .    Consequently the 

assumed expansion (3. 14) becomes invalid for   r large on the supersonic 

branch,  and thus leads to an erroneous result. 

4.    The Solution in the Transonic Region 

To obtain an approximate solution in the transonic region,  as 

discussed in   §  2. 2(d),   (e) (cf.  £qs.   2. 27,   28 and 32) and also as 

guided by the boundary conditions Eq.  {3. 13),  first we distort the 

independent variable by the transformation 

7 = «    £     , (4.1) 

and then expand    w, 9     into the form 

*{&   =  , + J\%) t c/Vfe *•«***($) f  • • • , (4. 2) 

l/a    M Z/*   (Z) (J) 

B($)   = / +«   9 ($)+«   6  ($) +o(9 (£)/•-•• . (4. 3) 

With 6*o   (~2<r(t+4)m/),  Eqs.  (3. I) and (3. 2) reduce to 

1 Jsy       l    Lr J   J ^ 

5=   •-tjj.(l+b*)*+0(S) (4.5) 

Substituting £qs.  (4. 1) - (4. 3) into Eqs.   (4. 4) and (4.. 5),  we obtain the 

first order equation: 

^''W'^V/yj (4.6, 

t -29- 



and the second order equation: 

t 

'4   7* 

The correction due to the terms with constants    a   and   6   enters only 

in      W        ,6        and higher order terms. 

Now Eq.   (4. 6) can be integrated once to yield: 

*""+   |X .-2-j?   +D, (4.8) 

using 
where the constant     U,     can be determined by the boundary condition (3. 13); 

the result is, 

-Z/3 
t>.  - O.oss (f-f-i) for the subsonic branch, 

-*/j 
Dt   =-0.cf (ftl) for the supersonic branch. 

(4.9) 

It is convenient to rewrite Eq.  (4. 8) in the following form 

m # + v
z = */*/ (4.io) 

dx.     <r 

where 

Now Eq.  (4. 10) is of the Riccati type,  which,  by the transformation 

Jfx) s ±    *L      , (4.11) 

can be reduced to a second order linear equation: 

A   , -~p   -,(x+*)V~.-0 (4.12) 

The solution of this equation for      (z+Z,)yo    is 

«r = * Z   I  J,« * /// ('2)       ,        2 = 4 M**/       , (4. 13) u  "J J      J J 

where  iY*/   is the modified Bessel function of the first kind, and   M   ,  N 
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( 

C 

are the integration constants.    By using t,q.  (4. 11),  the solution of 

Eq.  (4. 10) is then 

Jb It/JZ) + NI.ftW 

r.,/(2) + NIi/ (2) 
'A 

where 
,    , -3/2 

2 = §  (**•*,)    , and ztzt>o 

The constant    N     can be determined by using the condition (3. 13). 

The continuation of Eq.   (4. 14) into the region    xt-z, <o    is 

provided by 
'/a '/3 

% 

2    I, (2) = £   J, (g) 
"1 ~3 

wnere mi/z 

Consequently Eq.  (4. 14) becomes 

,J/<: 

*6 

/««(¥)      £* /»*($> + »J.z,JP for J: y-*,  < o 

(4. 14) 

(4. 14a) 

(4.15) 

(4. 16) 

To discuss the above solution,  we first note that the inviscid solution in 

this transonic region is 

V   = X (4. 17) 

which has two branches for    x >0    and gives no solution for   .x < o   . 

Now before we determine the value of    N     for the corresponding viscous 

solutions,  we may also note that the general solution, given by (4. 14) 

and (4. 16),  is a semi-trancendental function of   Df     and the second 

integration constant   N It can be shown, from the properties of   I (z) 
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( 

at large    Z   ,  that in £q.   (4. 14) 

t fx       as -c 

- Vx       as        .£ 

1/ N > ~ 

N = -I 

and  y    has a simple pole at a certain finite    z    for    /V^-/     (which is 

of no physical significance).    This result shows that the viscous solutions 

tend to their respective inviscid values for x   large in a manner which 

implies again that (w=6   f y = &o)     is a nodal point (admitting more than 

one value of  N   ) while   (vf=o, y=°°)   is a saddle.poini (admitting only one 

value of N   ).    However,  for    x +&, <o   ,  Eq.   (4. 16) shows obviously 

that   f(£)     has infinite number of isolated simple poles at    £       where 

the denominator vanishes.    Since the properties of the solution curves 

in the   (rf ,V)    phase space exhibit no such singularities,  the solution (4. 16), 

therefore,  presents a good approximation to the real flow only for    g 

lying in the interval    0£%$£-$<£    where    £";    is the first pole and   $   is 

a positive number,  appropriately chosen such that   v(g-$) is not yet too 

large to void our approximation (4. 2). 

Having obtained the first order solution     W (£; =(^-r)    V.       .  the 

second order equation (4. 7) can be then integrated to yield 

(2> -*rs>r        *r<& . 
(4.16) 

where 

p(f)~f W%)</$ and f($)=  [w"(fj] -0+f )<?($)- 

It is obvious that    w (f)    is bounded wherever   W {§)    is bounded. 

Consequently,  the approximation is good even if we only take the first 

two terms in (4. 2) and (4. 3). 
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In order to obtain some numerical results, we first determine 

the value  N  in Eqs.   (4. 14),   (4, 16) by using conditions (3. 13) to obtain 

/Y= -0.S8S for the supersonic branch, 

N - -i for the subsonic branch. 
(4. 19t 

With these values of    D,    and   N    (cf.   4. 9 ard 4. 19),  the solutions are 

plotted in Fig.  6 (by using tables,  Ref.  8) from which several interesting 

results can be deduced   as follows: 

(i) For the supersonic branch,  the transonic solution starts from 

point   A    (cf.  Fig.  6) with the coordinates 

After the solution curve passes through a point of inflection   6 

and then crosses the line    V = o (w=l)   at point £   (cf.  also Fig.   4) 

# */•» / u    -    .«./ i & ( where        ^A«f^* (^    V,A-A*(ftf"* T and 

I — ) =• -0'9s(z-r.)     °f      )     i   it reaches a minimum when it inter- 
\dtfJs \%v*i 

cepts the curve    V = x   at    C    where 

It then increases from . W~ W£   to    W=/    at point     D    where 

That is,  there is an expansion wave following the cylindrical shock, 

(ii) The thickness of the cyHndrical shock, as defined in   § 2. 2(d),  is 

Ay =y/-yi   = 2-7 (It!) ex fn      /"-space   , Ar mf, Ay)       (4.22) 

across which the velocity has a "jump" 

An ~*-«z *z.as(jfc)   « (4.23) 
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( 

and 

f W  = ,+ ,',s(wi)   " 
^   /*     >/3 

(4.24) 

Combining Eqs.   (4. 22) and (4. 23),  we obtain 

&n  ~   S.S  SL . <4. 25) 

Comparing these results with those of a pl^ne normal shock 

(e.g.  Ref.   9).  we note first that the plane shock strength    ("v^w) 

is quite arbitrary while for a cylindrical shock,     Avf~0(c< 3), 

The expression for 3hock thickness (Eq.  4. 22) shows that 

Ay ~ 0 (of     )   f  although,   combining    ^w   .  the expression (4. Z'6) 

agrees with that of a plane shock (cf.   Ref.   9) within the order of 

magnitude.    The result (4. 25) differs,  however,  from Levey's 

result for the diffuse shock in a source flow (Ref.   4 Eq.   4. 9),  in 

which he explains the discrepancy as due to some degree of choice 

of the definition of the shock thickness.    Our result also indicates 

that the maximum velocity gradient inside a cylindrical shock is 

of order     « ,  (in contrast to Levey's result:   0(<x ) ) ,  while 

for a plane shock,   the maximum gradient is (cf.  Ref.  9) of 

order    (A»r)  « which reduces to    0(<x~'3) if     Avr ~ G (a 3) . 

The expression (4. 24) differs from the Prandtl relation of a 

plane shock by a term of     0(°(   )   which here agrees with Levey's 

result (Ref.   4,  Eq.  4. 13).    The differences between the present 

results of cylindrical flow and those of one-dimensional plane 

shock can perhaps be realized by visualizing that the viscous 

forces exerting on the surfaces     r</6    and   a>   of a fluid element 

is indeed of quite different nature from those exerting in plane 

shock flow,  since in the former case,,  the normal atress acting 
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on the burfate   at   will have a component in the radial direction, 

(iii)        On the subsonic branch,   w   is a monotonic decreasing function 

of  j   .    W = i   at point  £ (cf.  Figs.  6 and 4) where   n = -/• oz(til) "a 

and the velocity gradient    /£)   =-Ve  =-/.o/+(£jf/ja~'/3       (cf. 

also En    2. 21a),  which shows that the solution curve of the 

subsouic branch passes   w =/   (cf.  Fig.   4) slightly above the curve   & 

(iv) The thermodynamic variables in this flow region can b«; deduced 

from Eq.   (4. 5),   (1. 3) and {1.4)     That is,  in the expansion (4. 3) 

and 
>/3  M VJ at. . 

f(0)   =/+o(    f(£)+ct     f   ($)¥•• - 
(4.26) 

( 

we have 

and 

'/s 0) ,   ,    x73 

f**iJ'=-h $ 
(0 

(4.27) 

(4. 28) 

where  V(f)   i3 given in Eq3.  (4. 14) and (4. 16).    The values of   <? 
JO 

'" / 
plotted in Fig.  7.    The super sonic uiaucL and    9 

starts with compression and is then followed by an expansion 

wave, while the subsonic branch expands continuously.    Eq.   (4. 28) 

states simply that  £ ,   f   and   9   satisfy the isentropic relation 

up to   0(<X    ).    This implies that the entropy variation,  if any, 

across this region must be cf order at least    <x +t 
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5.    The Solution in the Inner Supersonic Region 

The above transonic solution shows that the supersonic branch 

flow approaches asymptotically to the subsonic branch and for    J < % 

both branches have supersonic local speed.    We shall proceed to find 

the solution for     V <% -    *-et us consider first the continuation of the 

subsonic branch.    For the sake of convenience,  we shall take the point 

in Fig.  6 as the boundary condition such that 

V&   2/3 ?/3   -4 
:->   >  % *-'•«{¥) «* > %-<%l-'-°»&) * 

and 
/ Ju \ /  j   \z/3     - i/3 

^74- (5.1) 

To obtain the solution for    y<%   >   one can try the following expansion 

1      (o)    „ 2   (0 3   (3) 
y(z.) - of y (z,) + o( y (x.) + a y (z.) y- • • ^ (5.2) 

G(z.) - ff<a)(z,j +<X9°U) A • • • 

which is to be substituted into Eqs.  (3.1) and (3. 2).    However, by noting 

the boundary condition (5. 1), a more convenient method to approximate 

the solution can be carried ~Ut by letting 

dt • 1.2 
V = -•£= aoi3 + a <X3t + (°*A) « £ for t = «"-' > O (5.3) 

where 

i-^Gw)3     '    aim°'§eS'(fH)*   '     a*mV°HF) (5. 3a) 

f*\ so that the conditions (5. 1) are satisfied and,  in addition     / -r-. )      will 

take tUa value     'lUL    at    <<f ^ ** {cf-.   §  2.2a).    integrating (5. 3) and 
of I 

using Eq. (5. 1),  we obtain 
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, for      t >o (5,4) 
^ 4» /(J±^k./\t\ 
C 7=7- &*  v g 

This solution is in good agreement with the Eq.  (4. 16) for   V >V? V.   • 

It can be seen at once that as    w-- Jf     (the maximum velocity at which 

£ = <3 i. or    t~*f    ~ ' » ^   approaches its smallest value   «      ,   say,  wh« 

in which the assigned values of    ^,^,13   have been used.    Thus we see 

that the flow supposedly terminates itself at a distance of    0(<X    )   to 

the inner side of   y~o   , beyond which there is no solution to our present 

system of equations.    To search further for the possibilities whether 

one still could obtain the solution of physical reality for   y<%, »  one 

re     c \ 

would face some rather dubious situations.    For instance,  near   J='%  » 

the density,  temperature and pressure all become so low that the validity 

of the equation of state for perfect gas (1.4) is questionable.    Besides, 

the fact that the viscous stresses reach the magnitude of the fluid pressur 

near    » =. rj     sets a likely limit as to the applicability of the Navier - 

Stokes equation (1. 1) and also raises a question as to whether Burnett's 

higher viscous terms (Ref.   10,  p.   271) should be employed to overcome 

the present difficulty.    Of course,   it would seem plausible to continue 

our solution further inward by assigning appropriate values to the 

arbitrary constant   C   in (2. 16).   Nevertheless.^ it is still impossible to 

bring the flow to   «=.-«>   (f^o) on account of the singularity that    yu ~ r 

near   r-o (cf.   1. 3).    To clarify these rather vague points is beyond the 

scope of this oaper, although such clarification   is certainly desirable. 
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6.    Thf; Entropy Variation 

We define S  to be the specific entropy, 

TriS   = Cpcfr -j-ty (6.1) 

then the energy equation (1-2) can be written as 

oTU   ~     =   a/i>v(X Qroa'T)  + $ (6.2) 
• of » 

where  y>    is the viscous dissipation function,   which in this case is, 

f - i (/^) [Off* m] * § </-/> ? % •       c*. 3) 
The above definition of JS   of a fluid element is clearly for an open system 

since the heat exchange by conduction,  and hence a net flow of entropy, 

occurs with the neighboring elements.    Thus Eq.  (6. 2) merely expresses 

the energy balance,  in terms of  JS   ,  of the lluid element — a system 

not isolated,  in the thetmodynamic sense,  from its surroundings.    The 

analysis of formulating the second law of thermodynamics for the fluid 

flow case by making the system closed has been investigated in some 

detail by Tolman and Fine (Ref.   11) and discussed later by Curtiss and 

Hirschfelder (Ref.   12) from, the point of view of statistical mechanics. 

Their idea is in essence to state that the change   AS   in the entropy of a 

system should be constituted of not only the entropy carried into the 

system due to conduction of heat energy,  equal to     di\ (—• qrodT) per 

unit volume, but also the net increase in entropy produced by irreversible 

processes taking place inside the system.    Following Tolman's notation, 

we may thus write 

In the present case,  Eq.  (6. 4), after combining with (6. 2), becomes 
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o TU (M).     =  4 (W if +d (6. 5* 

As we are only interested in the qualitative features of our later results, 

we simplify these equations by using the assumptions 

/*///*!   ='     '     /=°   >    C/> ' cv » constant     , r *}    • (6.6) 

Then the nondimenaional form of Eqs.  (6. 2) and (6.5) are respectively 

JL  4i as£2: JL.  4   +(£f-« -   +*   \ (6.7^ 

where 

^   = *% (6.7a) 

and 

-JLfA)    .Hal   >±(*f+(£?-*£+j] (6.3) 

Though the sign of the terms on the right hand side of (6. 7) is in general 

\ indefinite,  the value of the light hand side terms of (6. 8) is,  however, 

positive definite.    Therefore   (A), increases monotonically along 

the fluid flow,  as predicted by the second law for a closed system. 

Subtracting Eq.  (6.8) from (6.7),  we obtain 

(H\    = al + &a £ tee 

which can be integrated to yield 

^      =   J   y-  i*. «   ikl (6.9} 
° dy 

where the constant of integration is so chosen that both   J   and     J. _    _ 

tend to    -4    as   »-»<»,   J0    being arbitrary. 

In order to se>: that    </    of the shock type flow reaches a maximum 
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near     w = /     ,  we substitute Eq.  (2. 3) into (6. 7) and obtain 

JL & ~#*«(lz + yr~w)  . <6,io> 1-i   dy       J \ df      dy J ' ' 

This equation shows that for   j   outside the transonic region, the 

variation in    4     is at most of 0(<*) .    Within the transonic region,     zJ?    , 
dri* 

being of    0(<x~ )  ,  overwhelms the rest of the terms in the bracket s.nd 

hence {6.10) reduces to 

JL& ~ <*5 w £ (t+0<**))   . ((,. ii) 
y-/   dn        3 dyz  k ' ' 

It then follows that   J    assumes its maximum value at the point where 

the curvature of    w =vf(y)   curve vanishes    (   liTarO    at point   Q    in 

Fig,  6 and at this point     zz      is lass than zero).    However, from '6. 9), 
dv2 

the quantity     J + zL o(   £. lev 0        does not have an extremum   in the 

entire flow region.    The above result is very much the same as that of a 

plane shock (e.g.  Ref.   9),  the solution of which shows that the velocity 

has a point of inflection at   W=/    where the entropy is also maximum. 

integrating Jfcq.  (6. 10) with the aid of Eqs.   (3. 1) and (3. 2) under 

condition (6. 6), we obtain 

J~4 = £^[e(vfFf")] « tye + ix-'Xtyw+y) (6.12) 

whure 4 « ly (#/ff) 

so that   J->- Ja    as    F -"*-. °°   .    This equation is actually the definition 

of J   usually given for a perfect gas.    Substitution of the solution (3.12) 

into (6. 12) shows that 

AS ~ O('x) for y>oC/J ._ (6.13) 

Within and around the trsasonic region,  we substitute the solution (4. 1)- 
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(4. 3) into (6. 12) and simplify the expansion,  then we obtain 

j-jo   » a 
3(r-i)(H±) J[ * ~y]  -h 0(<x) {6. 14) 

wnere 

y» -& "' 
Z=(w)    "'    7        '       }'$¥)«*<"") (6.14a) 

and the value   %-y(*>)  »B given by Eqs.  (4. 14),  (4. 16) and also plotted in 

Fig.  6.    Equation (6. 14) is consistent with the fact that    j'-   J0     - const. 

along the inviocid solution    o =x   .    The variation in   <i    along supersonic 

and subsonic branches of our solution follows directly from the data shown 

in Fig.   6.    The result is plotted in Fig.   8.    As    y    decreases along the 

supersonic branch,  the entropy   ^    first increases till it reaches the 
*/3,r .ft, 

maximum      ^   + 1.21 a   (Id.) (t-')      at point   6   , then decreases and 

later assumes once again the value    J     (the value of   J   at   j - <« ) at 

point     C      where     W '     is minimum there.    After that     -i      decreases 

rapidly with further decrease in    y    and eventually tend to    - oo     as 

the flow solution terminates.    On the subsonic branch,    .4    decreases 

monotically with decreasing    y   .    However, by substituting Eqs.  (6. 14) 

and (4. 3) into (6. 9),  it can easily be shown that    (^L.)      increases 

monotically with decreasing     V     and the variation in    (J-^ )     is of order 

OW  .    Consequently,  the result that   J-*- -« as    y -*• y . can be 

explained by visualizing from Eq.  (6. 9) that  JL (/&&)     decreases 

beyond all bounds as     •»-».«      .     Physically,  this probably implies that 

the flow is rather far from its equilibrium condition due to the large 

velocity gradient,  inducing a rapid decrease in temperature which even 

the important heat conduction in this region can not compensate. 

41. 



- 

{ 

c 

I 

7.    The Case when   A    Proportional to Temperature 

In our previous investigation,   u. ,    u.' and    %    were assumed to 

be constant.    IE this section the effects on the solution due to the variation 

of   *   ,   A.    and   A    ,  all assumed to be proportional to   T ,  will be 

calculated and compared with the previous results.    That is, 

/t =. const. T       ,        then A*6 . (7, 1) 

The dependence of  M on T other than the above relation can be worked 

cut in fc similar manner.    In the present, case   o( depends on   TJ   only, 

but not on the local temperature   7"   .    Besides, u   ,    u   and A  all have 

the same dependence on    T  .    Hence,  assuming c    .   C   and  Y   otill 

to be constant,  we may take 

S   ,   of   ,    -l =y*A    ,      <? "£/•/* all constant. (7.2) 

Then the fundamental system,  Eqs.  (1.15), (1.16), becomes 

</w .  >\d(0\     e~\  ...     t+l A(i(d*     „-) ^fJ*r ,    4   ^d6 (7. 3) 

and 

In the outer region,  we substitute the same expansion Eq.  (3. 4) 

into Eqs. (7. 3) and (7. 4), then carry out the calculation in a way similar 

to that described in    §   3.    The result is found to be 

w(0-f *^)i^l[A'^»'Af\tf .IjLf'H+ef^) (7.5) 

where 

A'*£2>-*£Z<-±Me-*)tJI     ,S.*2*pe.-S(*--L)j (7.5a) 
i 

and    y(§)     has the same expression as Eq.  (3. 12b) up to terms of 
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significant order.    Comparing this solution with Eq.  (3. 12),  one can see 

that for either     1+ 0(<* ®) < W < f *       ,  or    O <w < /-0(<x'/3)   the correction 

to the value of   w   at y   due to the variation in   ^i    is at most of order 

0 (of   )     .    A correction of the same order also applies to   6   .    Thus 

we may conclude that the effect cf varying    u.    is rather unimportant in 

this range. 

In the transonic region,  we can again try to obtain the solution 

of Eqs.  (7. 3),   (7. 4) in the form of Eqs.  (4. 1)- (4. 3).    This substitution 

leads to the following equations: 

and 

! 9Q) = /- Ay-,) W%) - «*(*jfi)[ „*»'+ z ^ ± g"] + 0(«> (7o 8) 

Putting first    6»o     in these equations and then comparring them with 
• 

the corresponding equations (4. 5)- (4. 7) for the case of constant JL , we 

see that the effect of varying   /t    is the introduction of an extra term 

to the second order equation,  namely,  the first term on the right hand 

side of Eq.  (7. 7).    This again implies that to account for the effect of 

variation in    M.    , the values of tv and   6   should be subjected to a 

correction term of order   0(<*  3) .    It can also be shown that in the 

inner supersonic region, its effect is also of    0 (<x     )  .    For the case 

( 
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where the dependence of ^    on  7"  ie different from Eq. (7. 1) (for 

instance     M. - C T      ,  ff>o   ),  the effect should qualitatively remain 

the same. 
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